quadratic polynomial - определение. Что такое quadratic polynomial
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое quadratic polynomial - определение

FUNCTION DEFINED BY A POLYNOMIAL OF DEGREE TWO
Quadratic polynomial; Quadratic functions; Second degree polynomial; Quadratic trinomial; Second-degree polynomial; Second-order polynomial; Second order polynomial; Y=ax^2+bx+c; Y=ax2+bx+c; Quadratic expression; Quadratic math; Single-variable quadratic function

Quadratic function         
In algebra, a quadratic function, a quadratic polynomial, a polynomial of degree 2, or simply a quadratic, is a polynomial function with one or more variables in which the highest-degree term is of the second degree.
Complex quadratic polynomial         
  • Dynamical plane : changes of critical orbit along internal ray of main cardioid for angle 1/6
  • Dynamical plane with critical orbit falling into 3-period cycle
  • Critical orbit tending to weakly attracting fixed point with abs(multiplier) = 0.99993612384259
  • ''w''-plane and ''c''-plane
  • Critical curves
  • Multiplier map
  • Dynamical plane with Julia set and critical orbit.
QUADRATIC POLYNOMIAL
Quadratic map; Complex quadratic map
A complex quadratic polynomial is a quadratic polynomial whose coefficients and variable are complex numbers.
Linear–quadratic regulator         
LINEAR OPTIMAL CONTROL TECHNIQUE
Linear-quadratic control; Dynamic Riccati equation; Linear-quadratic regulator; Quadratic quadratic regulator; Quadratic–quadratic regulator; Quadratic-quadratic regulator; Polynomial quadratic regulator; Polynomial–quadratic regulator; Polynomial-quadratic regulator; Linear quadratic regulator
The theory of optimal control is concerned with operating a dynamic system at minimum cost. The case where the system dynamics are described by a set of linear differential equations and the cost is described by a quadratic function is called the LQ problem.

Википедия

Quadratic function

In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".

For example, a univariate (single-variable) quadratic function has the form

f ( x ) = a x 2 + b x + c , a 0 , {\displaystyle f(x)=ax^{2}+bx+c,\quad a\neq 0,}

where x is its variable. The graph of a univariate quadratic function is a parabola, a curve that has an axis of symmetry parallel to the y-axis.

If a quadratic function is equated with zero, then the result is a quadratic equation. The solutions of a quadratic equation are the zeros of the corresponding quadratic function.

The bivariate case in terms of variables x and y has the form

f ( x , y ) = a x 2 + b x y + c y 2 + d x + e y + f , {\displaystyle f(x,y)=ax^{2}+bxy+cy^{2}+dx+ey+f,}

with at least one of a, b, c not equal to zero. The zeros of this quadratic function is, in general (that is, if a certain expression of the coefficients is not equal to zero), a conic section (a circle or other ellipse, a parabola, or a hyperbola).

A quadratic function in three variables x, y, and z contains exclusively terms x2, y2, z2, xy, xz, yz, x, y, z, and a constant:

f ( x , y , z ) = a x 2 + b y 2 + c z 2 + d x y + e x z + f y z + g x + h y + i z + j , {\displaystyle f(x,y,z)=ax^{2}+by^{2}+cz^{2}+dxy+exz+fyz+gx+hy+iz+j,}

where at least one of the coefficients a, b, c, d, e, f of the second-degree terms is not zero.

A quadratic function can have an arbitrarily large number of variables. The set of its zero form a quadric, which is a surface in the case of three variables and a hypersurface in general case.